\(\int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx\) [6]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 331 \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=-\frac {B \sqrt {a+b x+c x^2}}{f}-\frac {(b B+2 A c) \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f}-\frac {\left (B \sqrt {d}-A \sqrt {f}\right ) \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^{3/2}}+\frac {\left (B \sqrt {d}+A \sqrt {f}\right ) \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^{3/2}} \]

[Out]

-1/2*(2*A*c+B*b)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/f/c^(1/2)-B*(c*x^2+b*x+a)^(1/2)/f-1/2*arct
anh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2
))*(B*d^(1/2)-A*f^(1/2))*(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2)/f^(3/2)/d^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1
/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))*(B*d^(1/2)+A*f^(1/2))*(c
*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)/f^(3/2)/d^(1/2)

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 331, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1035, 1092, 635, 212, 1047, 738} \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=-\frac {\left (B \sqrt {d}-A \sqrt {f}\right ) \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {d} f^{3/2}}+\frac {\left (A \sqrt {f}+B \sqrt {d}\right ) \sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {d} f^{3/2}}-\frac {(2 A c+b B) \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f}-\frac {B \sqrt {a+b x+c x^2}}{f} \]

[In]

Int[((A + B*x)*Sqrt[a + b*x + c*x^2])/(d - f*x^2),x]

[Out]

-((B*Sqrt[a + b*x + c*x^2])/f) - ((b*B + 2*A*c)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*Sqr
t[c]*f) - ((B*Sqrt[d] - A*Sqrt[f])*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c
*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]*f^(3/2)) +
 ((B*Sqrt[d] + A*Sqrt[f])*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d]
+ b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]*f^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1035

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*((-b)*f) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {B \sqrt {a+b x+c x^2}}{f}+\frac {\int \frac {\frac {1}{2} (b B d+2 a A f)+(B c d+A b f+a B f) x+\frac {1}{2} (b B+2 A c) f x^2}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{f} \\ & = -\frac {B \sqrt {a+b x+c x^2}}{f}-\frac {\int \frac {-\frac {1}{2} (b B+2 A c) d f-\frac {1}{2} f (b B d+2 a A f)-f (B c d+A b f+a B f) x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{f^2}-\frac {(b B+2 A c) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{2 f} \\ & = -\frac {B \sqrt {a+b x+c x^2}}{f}-\frac {(b B+2 A c) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f}+\frac {\left (\left (B \sqrt {d}-A \sqrt {f}\right ) \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 \sqrt {d} f}+\frac {\left (\left (B \sqrt {d}+A \sqrt {f}\right ) \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 \sqrt {d} f} \\ & = -\frac {B \sqrt {a+b x+c x^2}}{f}-\frac {(b B+2 A c) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f}-\frac {\left (\left (B \sqrt {d}-A \sqrt {f}\right ) \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {d} f}-\frac {\left (\left (B \sqrt {d}+A \sqrt {f}\right ) \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {d} f} \\ & = -\frac {B \sqrt {a+b x+c x^2}}{f}-\frac {(b B+2 A c) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f}-\frac {\left (B \sqrt {d}-A \sqrt {f}\right ) \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^{3/2}}+\frac {\left (B \sqrt {d}+A \sqrt {f}\right ) \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.95 (sec) , antiderivative size = 619, normalized size of antiderivative = 1.87 \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=-\frac {2 B \sqrt {a+x (b+c x)}-\frac {2 (b B+2 A c) \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a}-\sqrt {a+x (b+c x)}}\right )}{\sqrt {c}}+\text {RootSum}\left [c^2 d-b^2 f+4 \sqrt {a} b f \text {$\#$1}-2 c d \text {$\#$1}^2-4 a f \text {$\#$1}^2+d \text {$\#$1}^4\&,\frac {-A c^2 d \log (x)+A b^2 f \log (x)+a b B f \log (x)-a A c f \log (x)+A c^2 d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-A b^2 f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-a b B f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )+a A c f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right )-2 \sqrt {a} B c d \log (x) \text {$\#$1}-2 \sqrt {a} A b f \log (x) \text {$\#$1}-2 a^{3/2} B f \log (x) \text {$\#$1}+2 \sqrt {a} B c d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+2 \sqrt {a} A b f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+2 a^{3/2} B f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+b B d \log (x) \text {$\#$1}^2+A c d \log (x) \text {$\#$1}^2+a A f \log (x) \text {$\#$1}^2-b B d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-A c d \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-a A f \log \left (-\sqrt {a}+\sqrt {a+b x+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{-\sqrt {a} b f+c d \text {$\#$1}+2 a f \text {$\#$1}-d \text {$\#$1}^3}\&\right ]}{2 f} \]

[In]

Integrate[((A + B*x)*Sqrt[a + b*x + c*x^2])/(d - f*x^2),x]

[Out]

-1/2*(2*B*Sqrt[a + x*(b + c*x)] - (2*(b*B + 2*A*c)*ArcTanh[(Sqrt[c]*x)/(Sqrt[a] - Sqrt[a + x*(b + c*x)])])/Sqr
t[c] + RootSum[c^2*d - b^2*f + 4*Sqrt[a]*b*f*#1 - 2*c*d*#1^2 - 4*a*f*#1^2 + d*#1^4 & , (-(A*c^2*d*Log[x]) + A*
b^2*f*Log[x] + a*b*B*f*Log[x] - a*A*c*f*Log[x] + A*c^2*d*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] - A*b^2*
f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] - a*b*B*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] + a*A*c*
f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1] - 2*Sqrt[a]*B*c*d*Log[x]*#1 - 2*Sqrt[a]*A*b*f*Log[x]*#1 - 2*a^(
3/2)*B*f*Log[x]*#1 + 2*Sqrt[a]*B*c*d*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1 + 2*Sqrt[a]*A*b*f*Log[-Sq
rt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1 + 2*a^(3/2)*B*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1 + b*B
*d*Log[x]*#1^2 + A*c*d*Log[x]*#1^2 + a*A*f*Log[x]*#1^2 - b*B*d*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1
^2 - A*c*d*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*#1]*#1^2 - a*A*f*Log[-Sqrt[a] + Sqrt[a + b*x + c*x^2] - x*
#1]*#1^2)/(-(Sqrt[a]*b*f) + c*d*#1 + 2*a*f*#1 - d*#1^3) & ])/f

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(540\) vs. \(2(251)=502\).

Time = 0.82 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.63

method result size
risch \(-\frac {B \sqrt {c \,x^{2}+b x +a}}{f}-\frac {\frac {B b \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{\sqrt {c}}+2 A \sqrt {c}\, \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )-\frac {\left (A \sqrt {d f}\, b f -A a \,f^{2}-A c d f +B \sqrt {d f}\, a f +B \sqrt {d f}\, c d -B b d f \right ) \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (A \sqrt {d f}\, b f +A a \,f^{2}+A c d f +B \sqrt {d f}\, a f +B \sqrt {d f}\, c d +B b d f \right ) \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{\sqrt {d f}\, f \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}}{2 f}\) \(541\)
default \(\frac {\left (-A f -B \sqrt {d f}\right ) \left (\sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}+\frac {\left (2 c \sqrt {d f}+b f \right ) \ln \left (\frac {\frac {2 c \sqrt {d f}+b f}{2 f}+c \left (x -\frac {\sqrt {d f}}{f}\right )}{\sqrt {c}}+\sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}\right )}{2 f \sqrt {c}}-\frac {\left (b \sqrt {d f}+f a +c d \right ) \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{f \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\right )}{2 \sqrt {d f}\, f}+\frac {\left (A f -B \sqrt {d f}\right ) \left (\sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \ln \left (\frac {\frac {-2 c \sqrt {d f}+b f}{2 f}+c \left (x +\frac {\sqrt {d f}}{f}\right )}{\sqrt {c}}+\sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}\right )}{2 f \sqrt {c}}-\frac {\left (-b \sqrt {d f}+f a +c d \right ) \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{f \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}\right )}{2 \sqrt {d f}\, f}\) \(803\)

[In]

int((B*x+A)*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-B*(c*x^2+b*x+a)^(1/2)/f-1/2/f*(B*b*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)+2*A*c^(1/2)*ln((1/2*b+
c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-(A*(d*f)^(1/2)*b*f-A*a*f^2-A*c*d*f+B*(d*f)^(1/2)*a*f+B*(d*f)^(1/2)*c*d-B*b*d
*f)/(d*f)^(1/2)/f/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+
b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f
)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))-(A*(d*f)^(1/2)*b*f+A*a*f^2+A*c*d*f
+B*(d*f)^(1/2)*a*f+B*(d*f)^(1/2)*c*d+B*b*d*f)/(d*f)^(1/2)/f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(
1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/
f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f)))

Fricas [F(-1)]

Timed out. \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=\text {Timed out} \]

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=- \int \frac {A \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx - \int \frac {B x \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx \]

[In]

integrate((B*x+A)*(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(A*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x) - Integral(B*x*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?

Giac [F(-2)]

Exception generated. \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((B*x+A)*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) \sqrt {a+b x+c x^2}}{d-f x^2} \, dx=\int \frac {\left (A+B\,x\right )\,\sqrt {c\,x^2+b\,x+a}}{d-f\,x^2} \,d x \]

[In]

int(((A + B*x)*(a + b*x + c*x^2)^(1/2))/(d - f*x^2),x)

[Out]

int(((A + B*x)*(a + b*x + c*x^2)^(1/2))/(d - f*x^2), x)